SEARCH
— 葡萄酒 | 威士忌 | 白兰地 | 啤酒 —
— 葡萄酒 | 威士忌 | 白兰地 | 啤酒 —
We live in an era of data explosion, where Industrial IoT (IIoT) plays a crucial role. From smart factories to smart cities, IIoT is transforming our production and lifestyle at an astonishing speed. This transformation is driven by innovations in data acquisition and transmission technologies, with serial communication evolving from RS-232 to RS-485/422, and transitioning to more advanced wireless communication technologies.
RS-232, a simple serial communication standard, was widely used for connecting various industrial devices. However, its short transmission distance and weak anti-interference capabilities gradually became insufficient for increasingly complex industrial environments.
RS-485/422, with their differential transmission and multi-point networking advantages, quickly became the mainstream communication methods in industrial control. They offered longer distances, better noise immunity, and support for multiple devices on a single bus.
RS-232: The Early Pioneer
With the rise of Industry 4.0 , demands for higher data transmission rates, real-time performance, and reliability have surged. Even RS-485/422 began to struggle. This is where wireless communication technologies, especially 5G, Wi-Fi, and Bluetooth, offer new opportunities for IIoT.
Imagine a smart factory where thousands of sensors collect data in real-time via wireless networks and transmit it to the cloud for analysis. Managers can monitor production line status anytime, anywhere, and optimize operations based on data analysis. This enhances efficiency, reduces costs, and improves product quality.
Wireless technologies are not without flaws. Security, stability, and interoperability among different wireless technologies remain challenges. Therefore, selecting appropriate communication technologies and designing optimized systems based on specific scenarios is crucial.
Traditional sensors could only measure simple physical quantities like temperature and pressure. Modern smart sensors, equipped with microprocessors and memory, can process, analyze, and make decisions locally, then upload processed data to the cloud via wireless networks.
With advancements in AI, edge computing, and other technologies, IIoT will see broader development. We will witness smarter sensors, more powerful data analysis, more flexible network architectures, and richer application scenarios.
IIoT faces challenges like data security, privacy protection, standardization, and talent development. Addressing these issues collectively will unlock IIoT’s full potential, making it a powerful engine for societal progress.
Packet loss has always been a contentious topic in the networking industry. It remains a critical consideration in the design and implementation of networks, primarily due to its direct impact on network efficiency and overall performance.
View details01 Overview of OSPF02 Basic Concepts of OSPF03 OSPF Network Types04 Point-to-Multipoint05 Impact of Network Types on OSPF OperationAs we all know, choosing the right routing protocol is crucial for achieving efficient data transmission and network...
View detailsIn today's era of industrial Internet of Things (IIoT), the demand for stable and reliable network connections in industrial settings is ever-increasing. Industrial 4G routers with SIM slots play a crucial role in connecting industrial equipment t...
View detailsReliability and safety are the core and most fundamental functions of automated equipment. User-friendly and efficient human-machine interaction is the primary manifestation of the value of the equipment.
View detailsMo